A decomposition of the Moran coefficient in order to separately test for the simultaneous presence of positive and negative autocorrelation in a variable.

MI.decomp(x, W, nsim = 100)

Arguments

x

a vector or matrix

W

spatial connectivity matrix

nsim

number of iterations to simulate the null distribution

Value

Returns a data.frame that contains the following information for each variable:

I+

observed value of Moran's I (positive part)

VarI+

variance of Moran's I (positive part)

pI+

simulated p-value of Moran's I (positive part)

I-

observed value of Moran's I (negative part)

VarI-

variance of Moran's I (negative part)

pI-

simulated p-value of Moran's I (negative part)

pItwo.sided

simulated p-value of the two-sided test

Details

If x is a matrix, this function computes the Moran test for spatial autocorrelation for each column.

The p-values calculated for I+ and I- assume a directed alternative hypothesis. Statistical significance is assessed using a permutation procedure to generate a simulated null distribution.

References

Dary, Stéphane (2011): A New Perspective about Moran’s Coefficient: Spatial Autocorrelation as a Linear Regression Problem. Geographical Analysis, 43 (2): pp. 127 - 141.

Author

Sebastian Juhl

Examples

data(fakedata)
X <- cbind(fakedataset$x1, fakedataset$x2,
fakedataset$x3, fakedataset$negative)

(MI.dec <- MI.decomp(x = X, W = W, nsim = 100))
#>          I+       VarI+        pI+            I-       VarI-        pI-   
#> 1 0.3894789 0.002064278 0.00990099 ** -0.0783007 0.001798007 1.00000000   
#> 2 0.3048369 0.001790553 0.00990099 ** -0.1360794 0.002070329 0.97029703   
#> 3 0.2247566 0.001963019 0.29702970    -0.2156438 0.002326726 0.47524752   
#> 4 0.1131614 0.002086170 1.00000000    -0.3572259 0.002051660 0.00990099 **
#>   pItwo.sided  
#> 1  0.01980198 *
#> 2  0.01980198 *
#> 3  0.59405941  
#> 4  0.01980198 *

# the sum of I+ and I- equals the observed Moran coefficient:
I <- MI.vec(x = X, W = W)[, "I"]
cbind(MI.dec[, "I+"] + MI.dec[, "I-"], I)
#>                              I
#> [1,]  0.311178214  0.311178214
#> [2,]  0.168757531  0.168757531
#> [3,]  0.009112739  0.009112739
#> [4,] -0.244064424 -0.244064424